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Off the deep end: What can deep learning do for the gene
expression field?
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After a COVID-related hiatus, the fifth biennial symposium
on Evolution and Core Processes in Gene Regulation met at the
Stowers Institute in Kansas City, Missouri July 21 to 24, 2022.
This symposium, sponsored by the American Society for
Biochemistry and Molecular Biology (ASBMB), featured ex-
perts in gene regulation and evolutionary biology. Topic areas
covered enhancer evolution, the cis-regulatory code, and reg-
ulatory variation, with an overall focus on bringing the power
of deep learning (DL) to decipher DNA sequence information.
DL is a machine learning method that uses neural networks to
learn complex rules that make predictions about diverse types
of data. When DL models are trained to predict genomic data
from DNA sequence information, their high prediction accu-
racy allows the identification of impactful genetic variants
within and across species. In addition, the learned sequence
rules can be extracted from the model and provide important
clues about the mechanistic underpinnings of the cis-regula-
tory code.
Interpreting the cis-regulatory sequence rules to obtain
a mechanistic understanding of gene regulation

A sought-after goal of the gene regulation field is to decode
enhancer grammar (1). How do transcription factor (TF)
binding motifs within an enhancer combine to generate its
unique activity? Can we learn the enhancer grammar to create
synthetic spatially or temporally regulated enhancers? The
great advantage of deep learning (DL) models over traditional
methods is that they learn complex cis-regulatory rules in a
precise and unbiased manner, allowing for new sequence rules
to be discovered. Identifying these rules is done after model
training and is not trivial; yet, a variety of interpretation tools
already exist to obtain the important sequence features and
their rules of interactions. In this manner, DL models reliably
reveal the binding motifs of TFs and provide important clues
as to how the motifs combine to produce an experimental
outcome.

Interpreting DL models can therefore reveal novel mecha-
nistic insights that can then be tested experimentally. For
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example, Alexander Stark (IMP, Vienna) discussed his labo-
ratory’s recent application of DL to their STARR-seq method
to predict enhancer activity from DNA sequence (2). Deep-
STARR can be successfully used to design synthetic enhancers
with desired activities. Julia Zeitlinger (Stowers Institute)
described her laboratory’s work on applying DL to understand
the cis-regulatory rules of enhancers during Drosophila
embryogenesis. Using BPNet (3) and chromBPNet as DL
models, they uncovered TF cooperativity and sequences crit-
ical to opening chromatin, revealing a different effect for high
versus low affinity motifs. Shaun Mahony (Pennsylvania State
University) also explored the mechanistic basis of chromatin
accessibility by studying the evolutionary impacts of FOX gene
paralogs (4). Their DL approach specifically modeled chro-
matin state and DNA sequence to predict whether individual
paralogs required prior chromatin accessibility for binding.

Several talks focused on further improving our ability to
extract cis-regulatory information from DL models. Sara
Mostafavi (University of Washington) talked about her ap-
proaches to identify sequence features important for deter-
mining chromatin states in diverse human immune cells. She
discussed approaches to unlock elements in the DL algorithms
that were informative and reproducible, including identifying
the number of active motifs found at diverse enhancers (5).
Vivekanandan Ramalingam (Kundaje laboratory; Stanford
University) illustrated how the Kundaje laboratory extracts
important DNA sequences from a DL model to identify the
distance rules by which TF motifs cooperate in binding and
opening chromatin (3). He also shared dynseq, a browser tool
for visually exploring the sequences that were learned by a DL
model (6). These examples highlight the importance of further
tool development for motif identification and functional con-
tributions to enhancer activity.

A strength of DL models is that they can learn sequence
rules in an unbiased manner. Reassuringly, the learned rules
can often be matched to known processes involved in gene
regulation. For example, the learned TF binding motifs and
their affinities correspond remarkably well to biophysical
models of TF binding. Therefore, an important goal is to
combine DL with biophysical models of transcription. Along
this line, Justin Kinney (Cold Spring Harbor Laboratory)
discussed Mave-NN, a computational framework for integra-
tion of diverse gene expression data to make DL accessible to a
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biological user base (7). These biophysical models will illu-
minate the functional properties of gene switches such as those
studied using optogenetic technology by Hernan Garcia (UC
Berkeley) in the Drosophila embryo (8).
Placing extracted sequences into gene regulatory
networks and developmental processes

Since sequence information plays a central role in the fields
of gene regulation, development, and evolution, sequence-
centered DL models are an excellent way to promote cross-
fertilization between these fields, which was the overarching
theme for this American Society for Biochemistry and Mo-
lecular Biology (ASBMB)-sponsored conference. Evolution is a
crucial trove of knowledge for understanding gene regulation,
and conversely, an understanding of gene regulation is a key to
unlocking evolutionary processes. Deep learning can therefore
have a significant impact toward accelerating this dialogue
between fields. One path forward is to integrate the sequence
information extracted from DL models with other data mo-
dalities to construct gene regulatory networks (GRNs). For
example, to characterize key players in zebrafish inner ear
regeneration, Erin Jimenez (Shawn Burgess laboratory; NIH)
used single-cell ATAC-seq and RNA-seq to identify activated
enhancers during regeneration. Using DL, she uncovered a
role for the Sox and Six TFs in coordinately regulating ear
regeneration (9). This and other studies illustrate how DL
approaches can facilitate the molecular identification of GRNs
and increase the power of traditional genetic and genomic
studies for biomedical research.
Predicting the effect of genetic variation using DL
models

The high prediction accuracy of DL models can also be
leveraged without understanding the learned sequence rules.
When DL models are trained to predict a readout such as
ATAC-seq accessibility, the high prediction accuracy holds for
similar sequences, including genetic variants within a popu-
lation or across related species. This makes DL models ideal
for the identification of causal genetic variants and has the
potential to identify genes and alleles underlying the evolution
of complex phenotypes such as mammalian brain size. This
extremely challenging problem was tackled by Irene Kaplow
(Andreas Pfenning laboratory; Carnegie Mellon University) by
training a DL model on ATAC-seq data from several well-
characterized mammalian brains (10). Her model, TACIT,
allowed the identification of several motor cortex enhancers
that are associated with the evolution of brain size relative to
body size. This work paves the way for using deep learning to
identify enhancers and candidate genes involved in complex
traits that are subject to evolutionary selection.

Species- and population-level variation was also the subject
of DL analysis by Michael Wilson (Hospital for Sick Children,
Toronto) who applied the BPNet model to mouse liver TFs
and showed how it could predict TF binding profiles in other
mammalian species. In addition, his laboratory applied this
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model to interpret variations related to disease-causing alleles
involved in blood coagulation and lipid regulation.

Such use of DL models is poised to influence and comple-
ment the current genetic approaches used to map and un-
derstand the impact of cis-regulatory sequence variation.
Excellent examples were the talks from Drs Brem, Vierbuchen,
Wunderlich, Fay, and Wittkopp. Using a mouse fibroblast
senescence model, Rachel Brem’s laboratory at UC Berkeley
used a classic F1 hybrid approach to identify cis-regulatory
changes between two mouse species that explains their dif-
ferential response to irradiation. Their analysis highlighted the
TF USF2, which may play a role in senescence decision-
making. Similarly, Thomas Vierbuchen (Memorial Sloan
Kettering Cancer Center) described the use of mouse hybrid
cells to link cis-regulatory variation with TF binding and
enhancer function in the context of mouse embryonic and
brain development. Zeba Wunderlich (Boston University)
studied distinct populations and hybrids of Drosophila mela-
nogaster to understand how population-level variation impacts
the innate immune response to infection. Her laboratory found
that trans-acting alleles dominate the response to a Gram-
negative infection, while cis-acting effects dominate in a
Gram-positive infection. A similar population variation
approach was used by the laboratory of Justin Fay (University
of Rochester) to identify protein-based variation linked to
thermal tolerance in different species of yeast. They identified
numerous differences in protein stability and also an impor-
tant role of the hybrid cellular environment. Patricia Witt-
kopp (University of Michigan) described her laboratory’s
classical genetic approaches to empirically test the assumption
that trans-acting variants are more pleiotropic than cis-acting
variants in Saccharomyces cerevisiae. By comparing the impact
of cis- and trans-acting mutations on fitness and gene
expression, their highly quantitative assays revealed differences
in the effects of these two classes of mutations that support the
hypothesis that trans-regulatory mutations are more pleio-
tropic than cis (11).

The influence of genetic variation can also be studied at the
organismal level. Nicolas Rohner (Stowers Institute)
described work in his laboratory using Mexican cavefish,
which independently underwent metabolic adaptation to the
cave environment multiple times. His team combined ‘omics
datasets from livers of surface and cave morphs to identify
putative cis-regulatory changes that alter target genes and
pathways directly involved in cave adaptation (12). Such a
dissection of cis-regulatory evolution was also explored by
Phillip Davidson (Armin Moczek laboratory; Indiana Uni-
versity Bloomington) using dung beetles. These beetles have
sexually dimorphic horn development, and in some species,
males develop horns in response to nutritional cues. Davidson
explored the cis-regulatory basis of this developmental plas-
ticity using ‘omics approaches and identified enhancers that
may be responsible for nutritional and sex-responsive differ-
ential development. In these studies, identification of relevant
cis-regulatory changes relied on current molecular biological
tools including ATAC-seq. It is intriguing to consider how DL
approaches may complement this objective in the future.
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Using DL models to obtain insights into the mechanisms of
gene regulation should be a welcome addition to the current
purely experimental approaches. For example, Evgeny Kvon
(UC Irvine) used chromatin conformation capture technology
to map enhancer-promoter interactions for thousands of
validated mouse enhancers (13). They concluded that most
enhancer-promoter loops are tissue specific and are signifi-
cantly stronger when enhancers are active. Similarly, Tatha-
gata Biswas (Nicolas Rohner laboratory; Stowers Institute)
shared his work looking at global chromosomal architecture.
These studies make inferences about critical 3D genome in-
teractions that may differ between populations of cavefish.
Since DL models can be trained to predict Hi-C data from
sequence, these are areas that could benefit from an integrative
approach using both DL and targeted experiments.

Several talks at the meeting leveraged the interplay between
evolutionary changes and mechanistic insights into gene
regulation. By taking evolutionary changes as a starting point,
they used classical experimental approaches to uncover spe-
cific functions of enhancers, insulators, histone proteins, and
TFs, sometimes at the level of a single locus. For instance,
Mark Rebeiz (University of Pittsburgh) described elegant ex-
periments dissecting evolutionary transformations at the ebony
locus, where silencers have been systematically reshaped to
impact pigmentation in specific Drosophila species. Likewise,
Figure 1. Applications of deep learning to studying the complexity of g
chromatin sites, transcription factor (TF) binding, or enhancer activity data f
grammar and key players of a gene regulatory network (GRN). The prediction ca
and population level, such as the difference between cave and surface fish mo
of enhancers and gene targets involved in evolving traits, e.g., brain size or
Understanding the activity of complex, highly context-dependent biological sy
Nicolas Gompel (Ludwig-Maximilians University, Munich)
used the Drosophila pigmentation system to revisit the notion
of enhancer modularity at the yellow locus. Through analysis
of wing spot pigmentation in a number of species, his labo-
ratory showed how regulatory regions of this gene exhibit
multifunctionality and partial redundancy that evolved over
time. Dimple Notani (National Centre for Biological Sciences,
Bangalore) discussed her laboratory’s studies on estrogen-
driven gene regulation, where clusters of enhancers appear
to act in a cooperative fashion to drive gene expression. Some
elements are prebound to the estrogen receptor prior to
signaling. Others are induced and appear to require “driver”
enhancers for activity. Notably, these elements are not func-
tionally distinguishable based on previously measured chro-
matin properties.

Exploring evolutionary variation at the protein level, talks by
Pravrutha Raman (Harmit Malik laboratory; Fred Hutchinson
Cancer Center), David Arnosti (Michigan State University),
and Pinar Onal (Shelby Blythe laboratory; Northwestern Uni-
versity) focused on particular TFs and their evolution. Prav-
rutha Raman’s work examines the variability in histone
proteins over evolutionary time. She found that ancestral
histone variants H2A.X and H2A.Z are found to have fused to
form a composite gene, H2A.V in many Diptera. Interestingly,
some Drosophila have duplicated the H2A.V variant, with the
ene regulation. Current deep learning models enable predictions of open
rom DNA sequence, which can then be interpreted to uncover enhancer
pacity is excellent for identifying the impact of genetic variation at a species
rphs. Altogether, deep learning models are poised to help the identification
the phenotypic plasticity of dung beetles in response to nutritional cues.
stems, such as HOX genes, may represent a future frontier for deep learning.
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duplicates expressed in males, indicating that evolutionary
innovations in histone proteins may drive biological novelties.
David Arnosti’s talk about evolution of the C-terminal
Binding Protein also investigated how this core component of
the transcriptional apparatus has evolved in eukaryotes (14).
Deep phylogenetic analysis demonstrated that the intrinsically
disordered C terminus bears a surprising level of conservation
of short linear motifs, dating back to its earliest last common
bilaterian ancestor. Evolution of the Bicoid TF was discussed
by Pinar Onal, who specifically focused on the role of the
Bicoid DNA-binding domain. In testing ancestral forms of this
protein in the Drosophila embryo, she was able to replay the
evolutionary history of this domain as Bicoid duplicated and
evolved (15).

These focused individual studies demonstrate that learning
general rules for gene regulation using DL models should
inspire, but not replace, the focus on specific biological
problems. Like individual works of art, biological systems need
to be considered in their own right. Many aspects by which
they operate represent highly specialized solutions to specific
organismal challenges. As a result, highly complex combina-
tions of molecular components, such as the HOX gene cluster,
are often unique and may only be represented once in a
genome (Fig. 1). Thus, while DL innovations are ripe for
application to the fields of gene regulation, development, and
evolution, they do not replace the unique perspective that
individual studies bring.
Perspectives

The meeting brought together experimental and compu-
tational biologists, whose goal is to uncover how gene
expression is regulated in the context of evolution. In
particular, there was a focus on how DL models can impact
the study of gene regulation, development, and evolution
(Fig. 1). DL models can be interpreted to identify complex
sequence rules that underlie TF binding, enhancer function,
open chromatin regions, global chromosomal architecture,
and key players in a GRN. These rules can then be tested
and explored further using targeted experiments. DL models
can also be exploited to make accurate predictions about
genetic variation, which together with experimental ap-
proaches can help uncover enhancers and target genes
involved in specific biological processes and complex phe-
notypes. Thus, DL models have the potential to become
important tools among experimentalists, thereby accelerating
unique insights into biological systems.
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